paper
はじめに 今回はECCV'20に採録された2D Pose Estimationの論文をご紹介します。 Pose Estimationのデータセットとしてよく使われるCOCOデータセットは身体の17点の2次元特徴点の位置を推定することが一般的ですが、今回の論文ではCOCOの画像に対して、顔・両…
はじめに 今回は、CVPR'20に採録されたBottom-Up型の2D Pose Estimationについて紹介します。 [1908.10357] HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation 2D Pose Estimationには大きく2つのパターンがあり、Top-…
はじめに 今回は、近年のDeep Metric Learning (深層距離学習)の発展を再評価して、論文で論じられている程のパフォーマンス向上が実際にはなかったことを実験的に示した論文を紹介しつつ、Deep Metric Learningについて紹介しようと思います。
はじめに 今回は先日Amazonが公開し、CVPR'20にも採録された最新の仮想試着の論文について説明したいと思います。私自身、同系統の仮想試着の研究を行っていたので、周辺知識や個人的な見解も交えて説明をしたいと思います。背景が長いのですが、読むと仮想…
はじめに 今回は、自然言語界隈に発展をもたらし、デファクトスタンダードとなったTransformerのモデルを物体認識に取り入れた論文(End-to-End Object Detection with Transformers 2020/05/26 on arXiv)を紹介します。
はじめに 先日公開された3次元姿勢推定の手法であるEpipolar Transformersを紹介します。Human3.6Mという3次元姿勢推定で一般的なベンチマークとして使われるデータセットにおいて、最高精度を達成しています。また、Hand Pose Estimation (手の骨格の推定)…
はじめに 先月、YOLOv4が公開されました。位置づけとしては、物体認識のポピュラーなモデルの1つであるYOLO系統の最新版となります。結果がすごいのはぱっと見分かりましたし、内容も既存の手法をサーベイ・実験頑張って、精度上げていったんだなあくらいの…
CVPR2019の論文タイトルを一通り見て、画像生成系を中心にして身体と3Dやネットワーク探索、その他個人的に直近で使えそうなものをピックアップ。そのあたりをさらっと確認してまとめたものになります。★がついているものは後でもっとちゃんと読みたいもので…
Deep Learningにおいてパラメータを決めるのは面倒くさいです。バッチサイズと学習率もその内の2つです。何かモデルを実装するときは既存研究の論文のバッチサイズと学習率と同じものを使うのが楽ですが、データが変わるだけでも調整が必要になったり、モデ…
GANの作者のGoodfellowさんがおすすめの10論文を教えていたので、みてみます。Goodfellowさんのコメントに加えて、少し補足的説明を加えています。。基本的には最新の論文をすすめるということでICLR2018のオーラル論文等最新のが多め。